List decoding of noisy Reed-Muller-like codes
نویسندگان
چکیده
Coding theory has played a central role in the development of computer science. One critical point of interaction is decoding error-correcting codes. Firstand second-order Reed-Muller (RM(1) and RM(2), respectively) codes are two fundamental error-correcting codes which arise in communication as well as in probabilistically-checkable proofs and learning. In this paper, the first steps are taken toward extending the quick randomized decoding tools of RM(1) into the realm of quadratic binary and, equivalently, Z4 codes. The main algorithmic result is an extension of the RM(1) techniques from Goldreich-Levin and Kushilevitz-Mansour algorithms to the Hankel code, a code between RM(1) and RM(2). That is, given signal s of length N , a list is found that is a superset of all Hankel codewords φ with | 〈s, φ〉 | ≥ (1/k) ‖s‖, in time poly(k, log(N)). A new and simple formulation of a known Kerdock code is given as a subcode of the Hankel code which leads to two immediate corollaries. First, the new Hankel list-decoding algorithm covers subcodes, including the new Kerdock construction, so it can list-decode Kerdock, too. Furthermore, because dot products of distinct Kerdock vectors have small magnitude, a quick algorithm is obtained for finding a sparse Kerdock approximation. That is, for k small compared with 1/ √ N and for > 0, in time poly(k log(N)/ ), a k-Kerdock-term approximation e s to s is found with Euclidean error at most the factor (1 + +O(k/ √ N)) times that of the best such approximation.
منابع مشابه
List Decoding for Reed-Muller Codes and Its Application to Polar Codes
Gopalan, Klivans, and Zuckerman proposed a list-decoding algorithm for Reed-Muller codes. Their algorithm works up to a given list-decoding radius. Dumer, Kabatiansky, and Tavernier improved the complexity of the algorithm for binary Reed-Muller codes by using wellknown Plotkin construction. In this study, we propose a list-decoding algorithm for non-binary Reed-Muller codes as a natural genera...
متن کاملList Decoding of Reed-Muller Codes Based on a Generalized Plotkin Construction
Gopalan, Klivans, and Zuckerman proposed a listdecoding algorithm for Reed-Muller codes. Their algorithm works up to a given list-decoding radius. Dumer, Kabatiansky, and Tavernier improved the complexity of the algorithm for binary Reed-Muller codes by using the well-known Plotkin construction. In this study, we propose a list-decoding algorithm for non-binary Reed-Muller codes as a generaliza...
متن کاملList Decoding of q - ary Reed - Muller Codes 1 )
The q-ary Reed-Muller codes RMq(u,m) of length n = q are a generalization of Reed-Solomon codes, which use polynomials in m variables to encode messages through functional encoding. Using an idea of reducing the multivariate case to the univariate case, randomized list-decoding algorithms for Reed-Muller codes were given in [1] and [15]. The algorithm in [15] is an improvement of the algorithm ...
متن کاملThe List-Decoding Size of Reed-Muller Codes
In this work we study the list-decoding size of Reed-Muller codes. Given a received word and a distance parameter, we are interested in bounding the size of the list of Reed-Muller codewords that are within that distance from the received word. Previous bounds of Gopalan, Klivans and Zuckerman [4] on the list size of Reed-Muller codes apply only up to the minimum distance of the code. In this w...
متن کاملSoft-decision decoding of Reed-Muller codes as generalized multiple concatenated codes
In this paper, we present a new soft-decision decoding algorithm for Reed-Muller codes. It is based on the GMC decoding algorithm proposed by Schnabl and Bossert [1] which interprets Reed-Muller codes as generalized multiple concatenated codes. We extend the GMC algorithm to list-decoding (L-GMC). As a result, a SDML decoding algorithm for the first order Reed-Muller codes is obtained. Moreover...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/cs/0607098 شماره
صفحات -
تاریخ انتشار 2006